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ABSTRACT

Objective: To develop and validate a robust machine learning model for classifying breast ultrasound
images into benign, malignant, and normal categories, aiming to enhance diagnostic accuracy using
advanced feature extraction and ensemble learning techniques.

Methods: A dataset comprising 2233 images from five public datasets was utilized. After masking regions
of interest, deep features were extracted using pre-trained VGGI16, ResNet50V2, and EfficientNetB3
models, and concatenated. A multi-step feature selection process involving principal component
analysis, recursive feature elimination with LightGBM, and partial least squares discriminant analysis was
applied. A stacking ensemble classifier, integrating LightGBM, XGBoost, CatBoost, and random forest
with a logistic regression meta-learner, was trained using 5-fold cross-validation on a 75% training set
(balanced with synthetic minority oversampling technique), and evaluated on a 25% test set.

Results: The model achieved a macro average area under the curve-receiver operating characteristic
(AUC-ROC) of 0.956 and an Fl-score of 0.88 on the test set. Benign class results were AUC: 0.984, F1:
0.93, and normal class results were AUC: 0.969, F1: 0.92. The results for the malignant class were AUC:
0.916, F1score: 0.79. Feature importance analysis showed that ResNet50V2 had the highest contribution
to the model's performance.

Conclusion: The proposed approach, combining multi-convolutional neural network deep feature
fusion, optimized feature selection, and ensemble stacking, shows significant potential for automated
breast ultrasound classification, especially for benign and normal cases. While promising for clinical
decision support, the model’s lower sensitivity for malignant lesions necessitates further refinement.
Keywords: Breast ultrasound, deep learning, computer-aided diagnosis, ensemble learning, image
classification

oz
Amag: Gelismis 6zellik gikarma ve topluluk 6grenmesi teknikleri kullanarak tanisal dogrulugu artirmayi

hedefleyen, meme ultrason goéruntulerinin benign, malign ve normal kategorilerine siniflandirilmasi icin
glcli bir makine 6grenmesi modeli gelistirmek ve dogrulamaktir.

Yéntem: Bes halka acik veri setinden olusan 2233 goriintiiliik bir veri seti kullanilmistir. ilgili bolgeler
maskelendikten sonra, dnceden egitilmis VGG16, ResNet50V2 ve EfficientNetB3 modelleri kullanilarak
derin ozellikler c¢ikarilmis ve birlestirilmistir. Temel bilesen analizi, LightGBM ile o6zyinelemeli
ozellik eleme ve kismi en kigik kareler ayirt edici analizi iceren ¢ok adimli bir &zellik segme sireci
uygulanmistir. Lojistik regresyon meta-6grenicisi ile LightGBM, XGBoost, CatBoost ve random forest'i
entegre eden bir yiginlama topluluk siniflandiricisi, %75'lik (sentetik azinlik asir érnekleme teknigi
ile dengelenmis) egitim seti Uzerinde 5-fold cross-validation kullanilarak egitilmis ve %25'lik test seti
Uzerinde degerlendirilmistir.
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Bulgular: Model, test seti Gzerinde makro ortalama islem karakteristik egrisi altindaki alan (EAA) degeri 0,956 ve F1skoru 0,88 elde etmistir. Benign
sinif sonuglari EAA: 0,984, F1: 0,93 ve normal sinif sonuglart EAA: 0,969, F1: 0,92. Malign sinif sonuglari EAA: 0,916, F1: 0,79. Ozellik 6nem analizi

ResNet50V2'nin en yuksek katkiyi sagladigini gostermistir.

Sonug: Coklu evrisimli sinir aglari derin 6zellik birlestirme, optimize edilmis 6zellik segimi ve topluluk yiginlamayi birlestiren 6nerilen yaklasim,
ozellikle benign ve normal olgular icin otomatik meme ultrason siniflandirmasi agisindan énemli bir potansiyel géstermektedir. Klinik karar destegi
icin umut verici olmakla birlikte, modelin malign lezyonlar icin daha dustk duyarliligl, daha fazla iyilestirme gerektirmektedir.

Anahtar Kelimeler: Meme ultrasonu, derin 6grenme, bilgisayar destekli tani, topluluk 6grenmesi, gortintl siniflandirma

INTRODUCTION

Breast cancer remains a leading cause of cancer-related
mortality in women worldwide." Early detection is critical,
as it not only improves survival rates but also leads to
more effective treatment options. Ultrasonography has
emerged as a key imaging modality in this context owing
to its accessibility, low cost, lack of ionizing radiation, and
ability to provide real-time visualization of breast tissue
architecture.? However, despite its advantages, ultrasound
imaging is inherently operator-dependent, and its image
interpretation can be highly challenging, which may result
in diagnostic variability! To overcome these limitations,
deep learning offers a novel solution for automated lesion
classification.

Several studies have demonstrated that deep learning
models, including convolutional neural networks (CNNs),
can effectively identify and classify regions of interest
within ultrasound images by learning hierarchical
representations of features3® For instance, Cao et al3
compared multiple deep learning architectures for lesion
detection and classification, underscoring the potential of
CNNs to delineate lesion boundaries more consistently
than manual methods. Similarly, Vigil et al* introduced
a dual-purpose deep learning model that concurrently
detects and diagnoses breast lesions in ultrasound images,
highlighting the benefits of integrated approaches for
improving diagnostic consistency.

Advancesin feature extractionthrough discriminative deep
learning frameworks further enhance the performance
of automated systems. Yu et al> demonstrated that
employing deep feature extraction from targeted regions
in ultrasound images can lead to improved accuracy in
differentiating between benign, malignant, and normal
tissues. Moreover, incorporating attention mechanisms,
as proposed by Kalafi et al.® helps the model focus on
the most diagnostically relevant parts of the image,
thereby addressing the ambiguity inherent in ultrasound
interpretation. Such strategies may ultimately reduce the
incidence of unnecessary biopsies while ensuring high
sensitivity in malignancy detection.

The integration of these models not only promises
greater diagnostic consistency but also reduces operator
variability and enhances clinical decision support systems.
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Furthermore, as shown by Yap et al,? automated
approaches based on CNNs offer scalable solutions that
facilitate rapid and reliable lesion detection, potentially
contributing to earlier intervention and improved patient
outcomes.

This study aimed to develop and validate a machine
learning model to classify breast ultrasound images as
benign, malignant, or normal, thereby enhancing diagnostic
accuracy and supporting radiologists. Our approach is
distinguished from previous work through several key
innovations: First, we systematically integrate deep features
from three complementary CNN architectures (VGGI6,
ResNet50V?2, EfficientNetB3) rather than relying on single
architectures. Second, we implement a comprehensive
multi-step feature optimization pipeline combining
principal component analysis (PCA), recursive feature
elimination (RFE) with LightGBM, and partial least squares
discriminant analysis (PLS-DA), a more sophisticated
approach than typically employed in breast ultrasound
classification. Third, we utilize a stacking ensemble
methodology that integrates four diverse base learners
(LightGBM, XGBoost, CatBoost, random forest) with logistic
regression meta-learning, going beyond simple voting
or averaging approaches. Most importantly, our model is
trained and validated on a robust, heterogeneous dataset
created by systematically merging five publicly available
collections, representing diverse imaging conditions,
patient populations, and clinical settings, addressing the
generalizability limitations inherent in single-dataset
studies. This comprehensive approach was designed to
achieve high accuracy and interpretability while improving
classification robustness across diverse clinical scenarios,
ultimately supporting radiologists in making accurate
diagnoses and improving patient outcomes.

METHODS

The study was conducted using five publicly available and
anonymized breast ultrasound datasets. Ethical approval
for this specific analysis was waived as itinvolved secondary
use of non-identifiable data.

Data Collection and Preprocessing

Our study utilized a comprehensive dataset created
by merging five publicly available breast ultrasound
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image collections: Breast Ultrasound Dataset from
Universidad de Castilla-La Mancha, breast ultrasound
lesion segmentation dataset/, breast ultrasound images
dataset (BUSI)® breast ultrasound images database’,
breast ultrasound classification dataset’®, and breast-
lesions- ultrasonography dataset." Details of the datasets
are shown in Table 1. This approach allowed us to address
the limitations of individual datasets while creating a more
robust and diverse collection for training our classification
model. These lesions were defined as separate cases In
the presence of multiple masks belonging to an image
containing more than one lesion. All data were classified
as benign, malignant, and normal and organised them
in separate directories according to their labels with
corresponding masks.

Preprocessing was performed using Python 3.8 with
OpenCV (version 4.5.5). Images were processed by applying
corresponding masks to isolate regions of interest and
increase focus on clinically relevant areas. The masked
images were resized to a uniform size of 224x224 pixels and
converted tored-green-blue colour space, standardized for
compatibility with pre-trained deep learning models used
in feature extraction. The experiments were conducted
on an Apple M4 chip with 16 GB random-access memory,
without a dedicated graphics processing unit.

Deep Feature Extraction

Three distinct widely-used CNN architectures, pre-
trained on the ImageNet dataset, were selected as feature

chosen for their proven performance in medical imaging
tasks and varying architectural complexities. Models were
loaded without their final classification layers, allowing
access to the rich, hierarchical feature representations
learned during their original training.

Each image was preprocessed (e.g, normalized and
scaled) for model compatibility. The CNNs then processed
the masked ultrasound images, generating feature
representations that captured patterns ranging from low-
level textures to high-level semantic features. The outputs
from all three models were concatenated into a composite
feature vector per image, providing a comprehensive
representation of lesion characteristics.

Feature Selection

To address the high dimensionality of the concatenated
feature vectors, a multi-step feature selection process was
implemented using Scikit-learn 1.0.2. Initially, the feature
matrix was standardized using StandardScaler to ensure
uniform scaling across features.

Then, PCA was applied to reduce dimensionality while
preserving 95% of the variance. This step eliminated
redundant and noisy features, transforming the high-
dimensional feature vectors (200,704 dimensions) into a
more manageable set of principal components, facilitating
subsequent analysis.

Next, we used RFE with a LightGBM model (version 3.3.2)
to select the top 50 features based on their importance

extractors: VGG16, ResNet50V2, and EfficientNetB3 scores. RFE iteratively removes the least significant
implemented using TensorFlow 2.10.0. These models were features, ensuring that only the most informative features
Table 1. Composition of the breast ultrasound datasets
Breast ultrasound | Breast ultrasound BUSC
- 7 - H - 11

BUS-UCLM dataset (BUSI)? images database’® dataset™ Breast-lesions-USG
Total images 683 780 232 250 256
Normal 419 133 0 0 4
Benign 174 437 109 100 154
Malignant 90 210 123 150 98
Number of patients |38 600 Not specified Not specified | 256
Nur.nber.of 2 Not stated 1 Not stated 4
radiologists

Siemens GELOGIQE9 and | AixPlorer Ultimate, : E';gﬁ;'g';'oﬁm 70
Ultrasound scanner | ACUSON LOGIQ E9 Agile Supersonic Imagine | Not stated

S2000T™M ultrasound system | ultrasound machine " Samsung R585

- Philips Affiniti 70G and EPIQ 5G
. Jbmp (image), .tif

Image file format .png .png (mask) .png .png
H|st9path9loglcal Yes Not stated Yes Not stated Yes
confirmation
BUS-UCLM: Breast ultrasound dataset from Universidad de Castilla-La Mancha, BUSC: Breast ultrasound classification dataset, USG: Ultrasonography
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are retained. This step refined the feature set by focusing
on those most relevant to the classification task.

Finally, we applied PLS-DA to the selected 50 features to
project them into a lower-dimensional space optimized
for class separation. Unlike PCA, which maximizes variance,
PLS-DA prioritizes features that maximize the distinction
between benign, malignant, and normal classes, enhancing
the discriminative power of the feature set for the stacking
classifier.

Following feature selection, we prepared the dataset for
model training to ensure robust performance.

Data Splitting and Model Training

The dataset, comprising 2233 breast ultrasound images
(1005 benign, 672 malignant, 556 normal), exhibited
class imbalance, with benign images constituting 45.0%,
malignant 30.1%, and normal 24.9% of the total. We split
the dataset into training (75%) and test (25%) sets using
stratified sampling to maintain these class proportions.
This resulted in a training set of 1675 images (754 benign,
504 malignant, 417 normal) and a test set of 558 images
(251 benign, 168 malignant, 139 normal). To address the
class imbalance in the training set, where the normal
and malignant classes were underrepresented compared
to the benign class, we applied the synthetic minority
oversampling technique (SMOTE). SMOTE generated
synthetic samples for the minority classes (malignant
and normal), balancing the training set while preserving
the original data distribution in the test set for unbiased
evaluation.

We developed a stacked ensemble classifier using four
base models: LightGBM (version 3.3.2), XGBoost (version
1.6.2), CatBoost (version 1.0.6), and random forest (scikit-
learn1.0.2). These models were trained on selected features
to leverage their unique decision boundaries. Then, their
predictions were integrated using logistic regression as
a meta-learner, with 5-fold cross-validation ensuring
robustness during training. Model hyperparameters are
shown in Table 2.

Model performance is assessed on the test set through
multiple metrics. Aconfusion matrix evaluates classification
accuracy per class, identifying potential misclassifications.
Receiver operating characteristic (ROC) curves are plotted

for each class, with area under the curve (AUC) scores
calculated to quantify discriminatory ability. Model
pipeline is summarized in Figure 1.

RESULTS

The dataset consisted of 2233 breast ultrasonography
images, categorized as benign (1005), malignant (672), and
normal (556). All images were successfully processed, with
features extracted from the regions of interest defined
by their corresponding masks. Feature extraction was
performed using pre-trained VGG16, ResNet50V2, and
EfficientNetB3 models, and the resulting features were
concatenated to form a high-dimensional feature vector
of 200,704 dimensions for each image. Dimensionality
reduction was then applied using PCA to retain features
explaining 95% of the variance, followed by exploration of
class-discriminative dimensionality reduction via PLS-DA
(Figure 2).

We evaluated the model's performance using metrics such
as AUC-ROC, AUC-precision-recall (PR), F1-score, precision,
and recall for each class, plus macro averages (Table 3).
Notably, the system yielded high precision and recall for
the benign and normal classes, with particularly strong
performance in identifying normal cases, as evidenced by
arecall of 1.000.

The model achieved high AUC scores: 0.984 for benign,
0.916 for malignant, and 0.969 for normal classes (Figure 3).
The benign class achieved the highest AUC of 0.984, with
a sharp curve near the top-left corner, indicating excellent
sensitivity and specificity with minimal false positives. The
normal class followed with an AUC of 0.969, reflecting
strong performance consistent with its perfect recall. The
malignant class had an AUC of 0.916, with a more gradual
curve suggesting a higher balance between sensitivity and
specificity due to the complexity of identifying malignant
lesions. These high AUC scores highlight the model's
effectiveness, especially for benign and normal cases.
Predictive reliability was further assessed using positive
predictive value (PPV) and negative predictive value (NPV),
yielding strong results, for benign (PPV: 0.924, NPV: 0.949),
malignant (PPV: 0.875, NPV: 0.899), and normal (PPV:
0.863, NPV:1.000). The F1 scores, which balance precision
and recall, were 0.93 for benign, 0.79 for malignant, and
0.92 for normal, with a macro average of 0.88.

Table 2. Hyperparameters of the base models

Model Key parameters

LightGBM num_leaves=63, max_depth=15, n_estimators=50
Random forest max_depth=20, n_estimators=200

XGBoost eval_metric="logloss’

CatBoost verbose=0

Stacking cv=>5, final_estimator=LogisticRegression(max_iter=1000)
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+
BUSI
+
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+
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- Load & Apply Mask
- Resize (224x224)

= Normalize
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SMOTE
(Oversample Train Data)
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Base: LGBM, XGB,

Feature Extraction (Base CNNs)
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Feature Selection

ResNetS0V2
EflicientNetB3

PCA
(500 components)

RFE (LGBM, n=50)

Concatenate
Features

PCA (95%) - PLS-DA
(2 components)

odel Training & Evaluation

5% Train
25% Test

Metrics

CatBoost, RF
Meta: Logistic Regression

Figure 1. Summary of the model pipeline

ROC-AUC, F1 Score,
Precission, Recall, ROC-PR

(T

BUS-UCLM: Breast ultrasound dataset from Universidad de Castilla-La Mancha, BUSI: Breast ultrasound images
dataset, QAMEBI: Breast ultrasound images database, BUSC: Breast ultrasound classification, BrEaST: Breast-lesions-
ultrasonography dataset, PCA: Principal component analysis, RFE: Recursive feature elimination, LGBM: Light gradient
boosting machine, PLS-DA: Partial least squares discriminant analysis, SMOTE: Synthetic minority oversampling technique,
XGB: eXtreme gradient boostin, RF: Random forest, ROC-AUC: Receiver operating characteristic-area under the curve, PR:

Precision-recall

PCA (95% Variance Explained)
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Figure 2. Comparison of dimensionality reduction techniques applied to the selected and scaled image features. (Left)
PCA projection onto the first two principal components (PC1, PC2), capturing 95% of the total variance in the features
used for classification. (Right) PLS projection onto the first two latent variables (PLSI, PLS2), derived specifically to
maximize the separation between classes based on the same feature set

PCA: Principal component analysis, PLS-DA: Partial least squares discriminant analysis
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Table 3. Performance metrics of the stacking classifier on the test set

Class AUC-ROC AUC-PR F1-score Precision Recall
Benign 0.984 0.98 0.93 0.92 0.93
Malignant 0.916 0.83 0.79 0.87 0.71
Normal 0.969 0.86 0.92 0.86 1.00
Macro Avg. 0.956 0.89 0.88 0.88 0.88
AUC-ROC: Area under the curve-receiver operating characteristic, PR: Precision-recall, Avg.: Average

ROC Curves (One-vs-Rest)

True Positive Rate

02

—— benign (AUC = 0.9842)
—— malignant (AUC = 0.9164)
—— normal (AUC = 0.9693)

00 7
0.0 02 04 0.6 08 1.0
False Positive Rate

Figure 3. ROC curves for benign (AUC=0.9842), malignant
(AUC=0.9164), and normal (AUC=0.9693) classes on the
test set

ROC: Receiver operating characteristic, AUC: Area under
the curve

The high F1scores for benign and normal classes reflect the
model’s ability to achieve both high precision and recall
for these classes, while the lower F1 score for the malignant
class (0.79) indicates a challenge in balancing precision
and recall.

The model's performance was further assessed using
PR curves (Figure 4), which show the balance between
precision and recall for each class. The PR curves show the
model’s ability to maintain high precision across varying
recall levels. The benign class achieved the highest average
precision (AP) score of 0.9803, reflecting the model's
strong performance in correctly identifying benign cases
with minimal false positives, as indicated by the curve
maintaining high precision even at high recall values. The
malignant class had an AP score of 0.8305, with the curve
showing a more noticeable decline in precision as recall
increases, suggesting a trade-off due to the complexity of
distinguishing malignant lesions. The normal class, with an
AP score of 0.8634, demonstrated a stable PR trade-off,
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Precision-Recall Curves (One-vs-Rest)

1.0
0.8
§ ¢
2
(&)
o
o
0.4
02 penign (AP = 0.9803)
—— malignant (AP = 0.8305)
—— normal (AP = 0.8634)
0.0
00 0.2 04 0.6 08 1.0

Recall

Figure 4. Precision-recall curves for benign (AP=0.9803),
malignant (AP=0.8305), and normal (AP=0.8634) classes
on the test set

AP: Average precision

reflecting the smaller sample size of normal cases in the
dataset, though with a slightly steeper drop in precision at
higher recall compared to the benign class.

A summary of the confusion matrix on the test set (251
benign, 168 malignant, 139 normal) reveals the following:
237 benign correctly predicted, with 15 misclassified
as malignant and O as normal; 111 malignant correctly
predicted, with 34 misclassified as benign and 23 as normal;
and 139 normal correctly predicted, with O misclassified as
benign or malignant. This corresponds to O false negatives
for the benign and normal classes, and 57 false negatives
in total for the malignant class (34 as benign, 23 as normal),
representing 33.9% of malignant cases. The most frequent
confusions occurred in malignant cases, where 34 were
misclassified as benign and 23 as normal, highlighting a
challenge in distinguishing malignant lesions from other
classes.

The feature importance analysis of the 50 selected
features reveals a clear contribution ranking among the
models: ResNet50V2, VGGI16, and EfficientNetB3 (Figure 5).
ResNet50V2 leads with a total importance of 3,467 across
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Figure 5. Feature importance analysis of the top 50 selected features from ResNet50V2, VGGI6, and EfficientNetB3

models
LGBM: Light gradient boosting machine

18 features, yielding the highest average importance per
feature, at 192.61. VGGI16 follows closely in importance
with a total score of 3,103, contributing 18 features and an
average importance per feature of 172.39. EfficientNetB3
ranks third, with a total importance of 2,395 across 14
features, resulting in an average importance per feature
of 171.07. These results highlight ResNet50V2's dominant
influence in the LightGBM model.

DISCUSSION

Our study successfully developed and evaluated a machine
learning model aimed at classifying breast ultrasound
images into benign, malignant, and normal categories
by leveraging deep features extracted from multiple
pre-trained CNNs (VGG16; ResNet50V2; EfficientNetB3),
employing sophisticated feature selection methods, and
utilizing a stacking classifier. The model was trained and
evaluated on a comprehensive dataset aggregated from
five distinct public collections; this final dataset represents
a heterogeneous population across multiple medical
centers, enhancing the potential generalizability of our
model for breast lesion classification in diverse clinical
settings, a crucial aspect highlighted by studies like Gu et
al.”> which demonstrated the value of large multi-center
datasets. The findings presented in the results section
indicate a robust overall performance, highlighted by

a macro average AUC-ROC of 0.956 and an Fl-score of
0.88 on the unseen test data. The model demonstrated
particularly high efficacy in classifying benign lesions (AUC
0.984, F1 0.93) and normal tissue (AUC 0.969, F1 0.92),
achieving perfect recall for the normal class. Despite the
model’s overall strong performance, classifying malignant
lesions proved more challenging, as is evidenced by lower
metrics (AUC: 0.916; Fl-score: 0.79) compared to benign
and normal classes.

The model's overall success can be attributed to several
key factors inherent in the methodology. Firstly, the
extraction of deep features using transfer learning from
three powerful, pre-trained CNNs (VGG16; ResNet50V2;
EfficientNetB3) provided rich, hierarchical representations
of the ultrasound images. Concatenating features
from these diverse architectures likely created a more
comprehensive feature pool than relying on a single
network, capturing a wider range of patterns relevant
to classification. For example, Cao et al3 achieved
87.5% accuracy using DenseNet on 1043 images with
binary classification, while Ellis et al® reported 77.77%
accuracy for ResNet50 and 73.80% for VGG-19 on 3-class
classification with 571 images. However, direct performance
comparison is inappropriate due to different dataset sizes
(our dataset of 2,233 images vs. their smaller datasets);
preprocessing methods, and validation approaches.
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Feature importance analysis confirmed the contribution
of all three networks, with ResNet50V2 features showing
the highest aggregate importance in the final LightGBM
selection step. Secondly, the use of a stacking ensemble
classifier, integrating predictions from LightGBM, XGBoost,
CatBoost, and random forest via a logistic regression meta-
learner, leveraged the strengths of multiple algorithms,
while compensating for individual model weaknesses
and enhancing predictive robustness and generalization.
Ensemble methods, like the one used by Ragab et al'*
(achieving 97.52% accuracy with VGG-16/19/SqueezeNet
+ multilayer perceptron with 780 images), often enhance
predictive robustness and generalization. Thirdly,
employing SMOTE during training helped mitigate the
inherent class imbalance in the dataset, likely contributing
to the strong performance observed, particularly for the
benign and normal classes, which achieved excellent
precision, recall, and AUC scores.

However, while the model demonstrated high precision
(0.87) for the malignant class, indicating that positive
predictions for malignancy are likely correct, the recall
(sensitivity) of 0.71 presents a significant concern from
a clinical perspective. This recall value implies that
approximately 28-29% of actual malignant cases in the test
set were misclassified as benign or normal (false negatives).
This contrasts sharply with some studies reporting very
high recall/sensitivity, such as Yadav et al.® who achieved
98.55% overall recall and 90.32% malignant recall using a
modified ResNet-101 with 780 images, and Ragab et al'*
reporting 96.01% overall sensitivity with their ensemble.
Even Kalafi et al.,® who used an Attention-VGGI6 for binary
classification with 439 images, reported 96% sensitivity. In
clinical practice, failing to detect malignancy has far more
severe consequences than misclassifying a benign lesion as
malignant, (false positive). The 29% false-negative rate for
malignant cases could lead to delayed diagnoses, allowing
disease progression that may result in advanced-stage
cancer, increased mortality risk, and reduced treatment
efficacy. Our lower sensitivity might stem from the inherent
subtlety of some malignant lesions, potential limitations
of SMOTE for this complex class, or the aggressive feature
selection potentially removing crucial subtle features.
Future improvements could focus on addressing class
imbalance or incorporating additional features to better
distinguish malignant characteristics.

Our approach aligns with trends in the literature that utilize
deep learning for breastultrasound analysis3-¢ We extended
the deep feature extraction concept used by Yu et al.’> by
fusing features from three distinct architectures rather
than focusing on specific regions within one architecture
(Inception-V3). Our model achieved strong performance,
particularly for the benign (AUC: 0.984) and normal (AUC:
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0.969) classes. While direct comparison is challenging
due to variations in datasets, preprocessing, metrics, and
architectures across studies, these results are competitive
with or exceed those reported previously (e.g., Zhang et al!
90% AUC using Breast Imaging Reporting and Data System
features; Vigil et al* 78.5% accuracy using autoencoder/
radiomics; Cao et al? 87.5% accuracy using DenseNet for
ternary classification; Gu et al.”? 0.91 AUC using VGGI9 for
binary prediction). However, achieving the near-perfect
scores reported by Jabeen et al'® (99.1% accuracy with
augmented BUSI dataset using pre-trained DarkNet-53) or
Kiran et al.” (100% accuracy with EfficientKNN on a small
780-image dataset) remains challenging, and may depend
heavily on their reliance on extensive data augmentation
and smaller, potentially less diverse datasets, which may
not generalize as effectively to our ternary classification
task across a larger, multi-center dataset of 2233 images.

Study Limitations

Several limitations should be acknowledged in this study.
The multi-step feature selection, while necessary, might
have discarded valuable information; the clinical relevance
of the final 50 features needs further investigation.
Although the dataset was compiled from multiple sources
to enhance diversity, the model's performance was
evaluated only on an internal test split. External validation
on completely independent datasets from different
institutions and ultrasound machines is crucial to assess its
generalizability.

Future research should prioritize enhancing the
sensitivity (recall) for malignant lesion detection. This
may involve exploring cost-sensitive learning algorithms
that better address the misclassification of malignant
cases, experimenting with alternative data augmentation
techniques techniques, advanced oversampling methods
(e.g., ADASYN, class weighting within models), or optimizing
feature selection. Investigating attention mechanisms
(as in Kalafi et al.® or Lyu et al.’® for segmentation) within
the feature extractors, exploring architectures known for
high performance, such as advanced ResNet and variants,
could vyield improvements. Investigating alternative
approaches, such as end-to-end deep learning models
that learn features and classify directly without explicit
feature extraction/selection steps, or autoencoders for
dimensionality reduction, could also be beneficial.

CONCLUSION

In conclusion, this study demonstrates the considerable
potential of combining deep feature extraction from
multiple CNNs with advanced feature selection and
ensemble learning techniques for classifying breast
ultrasound images. This approach represents a promising
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frontier in breast cancer diagnostics. The developed model
achieved high overall accuracy and discriminatory power,
particularly excelling in the classification of benign and
normal cases on a diverse, multi-center dataset. These
results underscore the model's efficacy and potential as
a robust tool for clinical decision support. By mitigating
challenges associated with operator dependency and
subjective interpretation, such automated methods can
offer a reproducible approach to enhance early detection
and potentially reduce unnecessary invasive procedures.
However, the critical challenge of lower sensitivity
(recall) for malignant lesions must be addressed through
further research and refinement. While promising as a
component of a computer-aided diagnosis system to
support radiologists and enhance consistency, this model
requires significant improvements in malignant detection
and rigorous external validation are essential before it can
be reliably integrated into clinical workflows to ultimately
support improved patient outcomes.
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