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ÖZ
Amaç: Gelişmiş özellik çıkarma ve topluluk öğrenmesi teknikleri kullanarak tanısal doğruluğu artırmayı 
hedefleyen, meme ultrason görüntülerinin benign, malign ve normal kategorilerine sınıflandırılması için 
güçlü bir makine öğrenmesi modeli geliştirmek ve doğrulamaktır.
Yöntem: Beş halka açık veri setinden oluşan 2233 görüntülük bir veri seti kullanılmıştır. İlgili bölgeler 
maskelendikten sonra, önceden eğitilmiş VGG16, ResNet50V2 ve EfficientNetB3 modelleri kullanılarak 
derin özellikler çıkarılmış ve birleştirilmiştir. Temel bileşen analizi, LightGBM ile özyinelemeli 
özellik eleme ve kısmi en küçük kareler ayırt edici analizi içeren çok adımlı bir özellik seçme süreci 
uygulanmıştır. Lojistik regresyon meta-öğrenicisi ile LightGBM, XGBoost, CatBoost ve random forest’ı 
entegre eden bir yığınlama topluluk sınıflandırıcısı, %75’lik (sentetik azınlık aşırı örnekleme tekniği 
ile dengelenmiş) eğitim seti üzerinde 5-fold cross-validation kullanılarak eğitilmiş ve %25’lik test seti 
üzerinde değerlendirilmiştir.
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ABSTRACT
Objective: To develop and validate a robust machine learning model for classifying breast ultrasound 
images into benign, malignant, and normal categories, aiming to enhance diagnostic accuracy using 
advanced feature extraction and ensemble learning techniques.
Methods: A dataset comprising 2233 images from five public datasets was utilized. After masking regions 
of interest, deep features were extracted using pre-trained VGG16, ResNet50V2, and EfficientNetB3 
models, and concatenated. A multi-step feature selection process involving principal component 
analysis, recursive feature elimination with LightGBM, and partial least squares discriminant analysis was 
applied. A stacking ensemble classifier, integrating LightGBM, XGBoost, CatBoost, and random forest 
with a logistic regression meta-learner, was trained using 5-fold cross-validation on a 75% training set 
(balanced with synthetic minority oversampling technique), and evaluated on a 25% test set.
Results: The model achieved a macro average area under the curve-receiver operating characteristic 
(AUC-ROC) of 0.956 and an F1-score of 0.88 on the test set. Benign class results were AUC: 0.984, F1: 
0.93, and normal class results were AUC: 0.969, F1: 0.92. The results for the malignant class were AUC: 
0.916, F1 score: 0.79. Feature importance analysis showed that ResNet50V2 had the highest contribution 
to the model’s performance.
Conclusion: The proposed approach, combining multi-convolutional neural network deep feature 
fusion, optimized feature selection, and ensemble stacking, shows significant potential for automated 
breast ultrasound classification, especially for benign and normal cases. While promising for clinical 
decision support, the model’s lower sensitivity for malignant lesions necessitates further refinement.
Keywords: Breast ultrasound, deep learning, computer-aided diagnosis, ensemble learning, image 
classification

Cite as: Panç K, Sekmen S. Multi-CNN deep feature fusion and stacking ensemble classifier for breast ultrasound lesion classification. 
Forbes Med J. 2025;6(2):147-55

1Karakoçan State Hospital, Clinic of Radiology, Elazığ, Türkiye
2Patnos State Hospital, Clinic of Radiology, Ağrı, Türkiye

 Kemal PANÇ1,  Sümeyye SEKMEN2

Meme Ultrasonu Lezyon Sınıflandırması için Multi-CNN Derin Özellik 
Füzyonu ve Yığınlama Topluluk Sınıflandırıcısı

Multi-CNN Deep Feature Fusion and Stacking Ensemble 
Classifier for Breast Ultrasound Lesion Classification

DOI: 10.4274/forbes.galenos.2025.02360

https://orcid.org/0000-0002-3951-7344
https://orcid.org/0000-0003-1609-6775


Forbes J Med 2025;6(2):147-55

148

INTRODUCTION
Breast cancer remains a leading cause of cancer-related 
mortality in women worldwide.1 Early detection is critical, 
as it not only improves survival rates but also leads to 
more effective treatment options. Ultrasonography has 
emerged as a key imaging modality in this context owing 
to its accessibility, low cost, lack of ionizing radiation, and 
ability to provide real-time visualization of breast tissue 
architecture.1,2 However, despite its advantages, ultrasound 
imaging is inherently operator-dependent, and its image 
interpretation can be highly challenging, which may result 
in diagnostic variability.1 To overcome these limitations, 
deep learning offers a novel solution for automated lesion 
classification.

Several studies have demonstrated that deep learning 
models, including convolutional neural networks (CNNs), 
can effectively identify and classify regions of interest 
within ultrasound images by learning hierarchical 
representations of features.3-5 For instance, Cao et al.3 
compared multiple deep learning architectures for lesion 
detection and classification, underscoring the potential of 
CNNs to delineate lesion boundaries more consistently 
than manual methods. Similarly, Vigil et al.4 introduced 
a dual-purpose deep learning model that concurrently 
detects and diagnoses breast lesions in ultrasound images, 
highlighting the benefits of integrated approaches for 
improving diagnostic consistency.

Advances in feature extraction through discriminative deep 
learning frameworks further enhance the performance 
of automated systems. Yu et al.5 demonstrated that 
employing deep feature extraction from targeted regions 
in ultrasound images can lead to improved accuracy in 
differentiating between benign, malignant, and normal 
tissues. Moreover, incorporating attention mechanisms, 
as proposed by Kalafi et al.,6 helps the model focus on 
the most diagnostically relevant parts of the image, 
thereby addressing the ambiguity inherent in ultrasound 
interpretation. Such strategies may ultimately reduce the 
incidence of unnecessary biopsies while ensuring high 
sensitivity in malignancy detection.

The integration of these models not only promises 
greater diagnostic consistency but also reduces operator 
variability and enhances clinical decision support systems. 

Furthermore, as shown by Yap et al.,2 automated 
approaches based on CNNs offer scalable solutions that 
facilitate rapid and reliable lesion detection, potentially 
contributing to earlier intervention and improved patient 
outcomes.

This study aimed to develop and validate a machine 
learning model to classify breast ultrasound images as 
benign, malignant, or normal, thereby enhancing diagnostic 
accuracy and supporting radiologists. Our approach is 
distinguished from previous work through several key 
innovations: First, we systematically integrate deep features 
from three complementary CNN architectures (VGG16, 
ResNet50V2, EfficientNetB3) rather than relying on single 
architectures. Second, we implement a comprehensive 
multi-step feature optimization pipeline combining 
principal component analysis (PCA), recursive feature 
elimination (RFE) with LightGBM, and partial least squares 
discriminant analysis (PLS-DA), a more sophisticated 
approach than typically employed in breast ultrasound 
classification. Third, we utilize a stacking ensemble 
methodology that integrates four diverse base learners 
(LightGBM, XGBoost, CatBoost, random forest) with logistic 
regression meta-learning, going beyond simple voting 
or averaging approaches. Most importantly, our model is 
trained and validated on a robust, heterogeneous dataset 
created by systematically merging five publicly available 
collections, representing diverse imaging conditions, 
patient populations, and clinical settings, addressing the 
generalizability limitations inherent in single-dataset 
studies. This comprehensive approach was designed to 
achieve high accuracy and interpretability while improving 
classification robustness across diverse clinical scenarios, 
ultimately supporting radiologists in making accurate 
diagnoses and improving patient outcomes.

METHODS
The study was conducted using five publicly available and 
anonymized breast ultrasound datasets. Ethical approval 
for this specific analysis was waived as it involved secondary 
use of non-identifiable data.

Data Collection and Preprocessing
Our study utilized a comprehensive dataset created 
by merging five publicly available breast ultrasound 

Bulgular: Model, test seti üzerinde makro ortalama işlem karakteristik eğrisi altındaki alan (EAA) değeri 0,956 ve F1 skoru 0,88 elde etmiştir. Benign 
sınıf sonuçları EAA: 0,984, F1: 0,93 ve normal sınıf sonuçları EAA: 0,969, F1: 0,92. Malign sınıf sonuçları EAA: 0,916, F1: 0,79. Özellik önem analizi 
ResNet50V2’nin en yüksek katkıyı sağladığını göstermiştir.
Sonuç: Çoklu evrişimli sinir ağları derin özellik birleştirme, optimize edilmiş özellik seçimi ve topluluk yığınlamayı birleştiren önerilen yaklaşım, 
özellikle benign ve normal olgular için otomatik meme ultrason sınıflandırması açısından önemli bir potansiyel göstermektedir. Klinik karar desteği 
için umut verici olmakla birlikte, modelin malign lezyonlar için daha düşük duyarlılığı, daha fazla iyileştirme gerektirmektedir.
Anahtar Kelimeler: Meme ultrasonu, derin öğrenme, bilgisayar destekli tanı, topluluk öğrenmesi, görüntü sınıflandırma
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image collections: Breast Ultrasound Dataset from 
Universidad de Castilla-La Mancha, breast ultrasound 
lesion segmentation dataset7, breast ultrasound images 
dataset (BUSI)8, breast ultrasound images database9, 
breast ultrasound classification dataset10, and breast-
lesions- ultrasonography dataset.11 Details of the datasets 
are shown in Table 1. This approach allowed us to address 
the limitations of individual datasets while creating a more 
robust and diverse collection for training our classification 
model. These lesions were defined as separate cases In 
the presence of multiple masks belonging to an image 
containing more than one lesion. All data were classified 
as benign, malignant, and normal and organised them 
in separate directories according to their labels with 
corresponding masks. 

Preprocessing was performed using Python 3.8 with 
OpenCV (version 4.5.5). Images were processed by applying 
corresponding masks to isolate regions of interest and 
increase focus on clinically relevant areas. The masked 
images were resized to a uniform size of 224x224 pixels and 
converted to red-green-blue colour space, standardized for 
compatibility with pre-trained deep learning models used 
in feature extraction. The experiments were conducted 
on an Apple M4 chip with 16 GB random-access memory, 
without a dedicated graphics processing unit.

Deep Feature Extraction
Three distinct widely-used CNN architectures, pre-
trained on the ImageNet dataset, were selected as feature 
extractors: VGG16, ResNet50V2, and EfficientNetB3 
implemented using TensorFlow 2.10.0. These models were 

chosen for their proven performance in medical imaging 
tasks and varying architectural complexities. Models were 
loaded without their final classification layers, allowing 
access to the rich, hierarchical feature representations 
learned during their original training.

Each image was preprocessed (e.g., normalized and 
scaled) for model compatibility. The CNNs then processed 
the masked ultrasound images, generating feature 
representations that captured patterns ranging from low-
level textures to high-level semantic features. The outputs 
from all three models were concatenated into a composite 
feature vector per image, providing a comprehensive 
representation of lesion characteristics.

Feature Selection
To address the high dimensionality of the concatenated 
feature vectors, a multi-step feature selection process was 
implemented using Scikit-learn 1.0.2. Initially, the feature 
matrix was standardized using StandardScaler to ensure 
uniform scaling across features. 

Then, PCA was applied to reduce dimensionality while 
preserving 95% of the variance. This step eliminated 
redundant and noisy features, transforming the high-
dimensional feature vectors (200,704 dimensions) into a 
more manageable set of principal components, facilitating 
subsequent analysis.

Next, we used RFE with a LightGBM model (version 3.3.2) 
to select the top 50 features based on their importance 
scores. RFE iteratively removes the least significant 
features, ensuring that only the most informative features 

Table 1. Composition of the breast ultrasound datasets

BUS-UCLM7 Breast ultrasound 
dataset (BUSI)8

Breast ultrasound 
images database9

BUSC 
dataset10 Breast-lesions-USG11

Total images 683 780 232 250 256
Normal 419 133 0 0 4
Benign 174 437 109 100 154
Malignant 90 210 123 150 98
Number of patients 38 600 Not specified Not specified 256
Number of 
radiologists 2 Not stated 1 Not stated 4

Ultrasound scanner
Siemens 
ACUSON 
S2000TM

GE LOGIQ E9 and 
LOGIQ E9 Agile 
ultrasound system

AixPlorer Ultimate, 
Supersonic Imagine 
ultrasound machine

Not stated

• Hitachi ARIETTA 70 
• Esaote 6150 
• Samsung RS85 
• Philips Affiniti 70 G and EPIQ 5 G 

Image file format .png .png .bmp (image), .tif 
(mask) .png .png

Histopathological 
confirmation Yes Not stated Yes Not stated Yes

BUS-UCLM: Breast ultrasound dataset from Universidad de Castilla-La Mancha, BUSC: Breast ultrasound classification dataset, USG: Ultrasonography
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are retained. This step refined the feature set by focusing 
on those most relevant to the classification task.

Finally, we applied PLS-DA to the selected 50 features to 
project them into a lower-dimensional space optimized 
for class separation. Unlike PCA, which maximizes variance, 
PLS-DA prioritizes features that maximize the distinction 
between benign, malignant, and normal classes, enhancing 
the discriminative power of the feature set for the stacking 
classifier. 

Following feature selection, we prepared the dataset for 
model training to ensure robust performance.

Data Splitting and Model Training
The dataset, comprising 2233 breast ultrasound images 
(1005 benign, 672 malignant, 556 normal), exhibited 
class imbalance, with benign images constituting 45.0%, 
malignant 30.1%, and normal 24.9% of the total. We split 
the dataset into training (75%) and test (25%) sets using 
stratified sampling to maintain these class proportions. 
This resulted in a training set of 1675 images (754 benign, 
504 malignant, 417 normal) and a test set of 558 images 
(251 benign, 168 malignant, 139 normal). To address the 
class imbalance in the training set, where the normal 
and malignant classes were underrepresented compared 
to the benign class, we applied the synthetic minority 
oversampling technique (SMOTE). SMOTE generated 
synthetic samples for the minority classes (malignant 
and normal), balancing the training set while preserving 
the original data distribution in the test set for unbiased 
evaluation.

We developed a stacked ensemble classifier using four 
base models: LightGBM (version 3.3.2), XGBoost (version 
1.6.2), CatBoost (version 1.0.6), and random forest (scikit-
learn 1.0.2). These models were trained on selected features 
to leverage their unique decision boundaries. Then, their 
predictions were integrated using logistic regression as 
a meta-learner, with 5-fold cross-validation ensuring 
robustness during training. Model hyperparameters are 
shown in Table 2.

Model performance is assessed on the test set through 
multiple metrics. A confusion matrix evaluates classification 
accuracy per class, identifying potential misclassifications. 
Receiver operating characteristic (ROC) curves are plotted 

for each class, with area under the curve (AUC) scores 
calculated to quantify discriminatory ability. Model 
pipeline is summarized in Figure 1.

RESULTS
The dataset consisted of 2233 breast ultrasonography 
images, categorized as benign (1005), malignant (672), and 
normal (556). All images were successfully processed, with 
features extracted from the regions of interest defined 
by their corresponding masks. Feature extraction was 
performed using pre-trained VGG16, ResNet50V2, and 
EfficientNetB3 models, and the resulting features were 
concatenated to form a high-dimensional feature vector 
of 200,704 dimensions for each image. Dimensionality 
reduction was then applied using PCA to retain features 
explaining 95% of the variance, followed by exploration of 
class-discriminative dimensionality reduction via PLS-DA 
(Figure 2).

We evaluated the model’s performance using metrics such 
as AUC-ROC, AUC-precision-recall (PR), F1-score, precision, 
and recall for each class, plus macro averages (Table 3). 
Notably, the system yielded high precision and recall for 
the benign and normal classes, with particularly strong 
performance in identifying normal cases, as evidenced by 
a recall of 1.000. 

The model achieved high AUC scores: 0.984 for benign, 
0.916 for malignant, and 0.969 for normal classes (Figure 3). 
The benign class achieved the highest AUC of 0.984, with 
a sharp curve near the top-left corner, indicating excellent 
sensitivity and specificity with minimal false positives. The 
normal class followed with an AUC of 0.969, reflecting 
strong performance consistent with its perfect recall. The 
malignant class had an AUC of 0.916, with a more gradual 
curve suggesting a higher balance between sensitivity and 
specificity due to the complexity of identifying malignant 
lesions. These high AUC scores highlight the model’s 
effectiveness, especially for benign and normal cases. 
Predictive reliability was further assessed using positive 
predictive value (PPV) and negative predictive value (NPV), 
yielding strong results, for benign (PPV: 0.924, NPV: 0.949), 
malignant (PPV: 0.875, NPV: 0.899), and normal (PPV: 
0.863, NPV: 1.000). The F1 scores, which balance precision 
and recall, were 0.93 for benign, 0.79 for malignant, and 
0.92 for normal, with a macro average of 0.88. 

Table 2. Hyperparameters of the base models
Model Key parameters
LightGBM num_leaves=63, max_depth=15, n_estimators=50
Random forest max_depth=20, n_estimators=200
XGBoost eval_metric=‘logloss’
CatBoost verbose=0
Stacking cv=5, final_estimator=LogisticRegression(max_iter=1000)
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Figure 1. Summary of the model pipeline
BUS-UCLM: Breast ultrasound dataset from Universidad de Castilla-La Mancha, BUSI: Breast ultrasound images 
dataset, QAMEBI: Breast ultrasound images database, BUSC: Breast ultrasound classification, BrEaST: Breast-lesions-
ultrasonography dataset, PCA: Principal component analysis, RFE: Recursive feature elimination, LGBM: Light gradient 
boosting machine, PLS-DA: Partial least squares discriminant analysis, SMOTE: Synthetic minority oversampling technique, 
XGB: eXtreme gradient boostin, RF: Random forest, ROC-AUC: Receiver operating characteristic-area under the curve, PR: 
Precision-recall

Figure 2. Comparison of dimensionality reduction techniques applied to the selected and scaled image features. (Left) 
PCA projection onto the first two principal components (PC1, PC2), capturing 95% of the total variance in the features 
used for classification. (Right) PLS projection onto the first two latent variables (PLS1, PLS2), derived specifically to 
maximize the separation between classes based on the same feature set
PCA: Principal component analysis, PLS-DA: Partial least squares discriminant analysis 
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The high F1 scores for benign and normal classes reflect the 
model’s ability to achieve both high precision and recall 
for these classes, while the lower F1 score for the malignant 
class (0.79) indicates a challenge in balancing precision 
and recall.

The model’s performance was further assessed using 
PR curves (Figure 4), which show the balance between 
precision and recall for each class. The PR curves show the 
model’s ability to maintain high precision across varying 
recall levels. The benign class achieved the highest average 
precision (AP) score of 0.9803, reflecting the model’s 
strong performance in correctly identifying benign cases 
with minimal false positives, as indicated by the curve 
maintaining high precision even at high recall values. The 
malignant class had an AP score of 0.8305, with the curve 
showing a more noticeable decline in precision as recall 
increases, suggesting a trade-off due to the complexity of 
distinguishing malignant lesions. The normal class, with an 
AP score of 0.8634, demonstrated a stable PR trade-off, 

reflecting the smaller sample size of normal cases in the 
dataset, though with a slightly steeper drop in precision at 
higher recall compared to the benign class. 

A summary of the confusion matrix on the test set (251 
benign, 168 malignant, 139 normal) reveals the following: 
237 benign correctly predicted, with 15 misclassified 
as malignant and 0 as normal; 111 malignant correctly 
predicted, with 34 misclassified as benign and 23 as normal; 
and 139 normal correctly predicted, with 0 misclassified as 
benign or malignant. This corresponds to 0 false negatives 
for the benign and normal classes, and 57 false negatives 
in total for the malignant class (34 as benign, 23 as normal), 
representing 33.9% of malignant cases. The most frequent 
confusions occurred in malignant cases, where 34 were 
misclassified as benign and 23 as normal, highlighting a 
challenge in distinguishing malignant lesions from other 
classes.

The feature importance analysis of the 50 selected 
features reveals a clear contribution ranking among the 
models: ResNet50V2, VGG16, and EfficientNetB3 (Figure 5). 
ResNet50V2 leads with a total importance of 3,467 across 

Figure 3. ROC curves for benign (AUC=0.9842), malignant 
(AUC=0.9164), and normal (AUC=0.9693) classes on the 
test set
ROC: Receiver operating characteristic, AUC: Area under 
the curve

Figure 4. Precision-recall curves for benign (AP=0.9803), 
malignant (AP=0.8305), and normal (AP=0.8634) classes 
on the test set
AP: Average precision

Table 3. Performance metrics of the stacking classifier on the test set
Class AUC-ROC AUC-PR F1-score Precision Recall
Benign 0.984 0.98 0.93 0.92 0.93
Malignant 0.916 0.83 0.79 0.87 0.71
Normal 0.969 0.86 0.92 0.86 1.00

Macro Avg. 0.956 0.89 0.88 0.88 0.88

AUC-ROC: Area under the curve-receiver operating characteristic, PR: Precision-recall, Avg.: Average
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18 features, yielding the highest average importance per 
feature, at 192.61. VGG16 follows closely in importance 
with a total score of 3,103, contributing 18 features and an 
average importance per feature of 172.39. EfficientNetB3 
ranks third, with a total importance of 2,395 across 14 
features, resulting in an average importance per feature 
of 171.07. These results highlight ResNet50V2’s dominant 
influence in the LightGBM model.

DISCUSSION
Our study successfully developed and evaluated a machine 
learning model aimed at classifying breast ultrasound 
images into benign, malignant, and normal categories 
by leveraging deep features extracted from multiple 
pre-trained CNNs (VGG16; ResNet50V2; EfficientNetB3), 
employing sophisticated feature selection methods, and 
utilizing a stacking classifier. The model was trained and 
evaluated on a comprehensive dataset aggregated from 
five distinct public collections; this final dataset represents 
a heterogeneous population across multiple medical 
centers, enhancing the potential generalizability of our 
model for breast lesion classification in diverse clinical 
settings, a crucial aspect highlighted by studies like Gu et 
al.,12 which demonstrated the value of large multi-center 
datasets. The findings presented in the results section 
indicate a robust overall performance, highlighted by 

a macro average AUC-ROC of 0.956 and an F1-score of 
0.88 on the unseen test data. The model demonstrated 
particularly high efficacy in classifying benign lesions (AUC 
0.984, F1 0.93) and normal tissue (AUC 0.969, F1 0.92), 
achieving perfect recall for the normal class. Despite the 
model’s overall strong performance, classifying malignant 
lesions proved more challenging, as is evidenced by lower 
metrics (AUC: 0.916; F1-score: 0.79) compared to benign 
and normal classes. 

The model’s overall success can be attributed to several 
key factors inherent in the methodology. Firstly, the 
extraction of deep features using transfer learning from 
three powerful, pre-trained CNNs (VGG16; ResNet50V2; 
EfficientNetB3) provided rich, hierarchical representations 
of the ultrasound images. Concatenating features 
from these diverse architectures likely created a more 
comprehensive feature pool than relying on a single 
network, capturing a wider range of patterns relevant 
to classification. For example, Cao et al.3 achieved 
87.5% accuracy using DenseNet on 1043 images with 
binary classification, while Ellis et al.13 reported 77.77% 
accuracy for ResNet50 and 73.80% for VGG-19 on 3-class 
classification with 571 images. However, direct performance 
comparison is inappropriate due to different dataset sizes 
(our dataset of 2,233 images vs. their smaller datasets); 
preprocessing methods, and validation approaches. 

Figure 5. Feature importance analysis of the top 50 selected features from ResNet50V2, VGG16, and EfficientNetB3 
models
LGBM: Light gradient boosting machine
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Feature importance analysis confirmed the contribution 
of all three networks, with ResNet50V2 features showing 
the highest aggregate importance in the final LightGBM 
selection step. Secondly, the use of a stacking ensemble 
classifier, integrating predictions from LightGBM, XGBoost, 
CatBoost, and random forest via a logistic regression meta-
learner, leveraged the strengths of multiple algorithms, 
while compensating for individual model weaknesses 
and enhancing predictive robustness and generalization. 
Ensemble methods, like the one used by Ragab et al.14 
(achieving 97.52% accuracy with VGG-16/19/SqueezeNet 
+ multilayer perceptron with 780 images), often enhance 
predictive robustness and generalization. Thirdly, 
employing SMOTE during training helped mitigate the 
inherent class imbalance in the dataset, likely contributing 
to the strong performance observed, particularly for the 
benign and normal classes, which achieved excellent 
precision, recall, and AUC scores.

However, while the model demonstrated high precision 
(0.87) for the malignant class, indicating that positive 
predictions for malignancy are likely correct, the recall 
(sensitivity) of 0.71 presents a significant concern from 
a clinical perspective. This recall value implies that 
approximately 28-29% of actual malignant cases in the test 
set were misclassified as benign or normal (false negatives). 
This contrasts sharply with some studies reporting very 
high recall/sensitivity, such as Yadav et al.15 who achieved 
98.55% overall recall and 90.32% malignant recall using a 
modified ResNet-101 with 780 images, and Ragab et al.14 
reporting 96.01% overall sensitivity with their ensemble. 
Even Kalafi et al.,6 who used an Attention-VGG16 for binary 
classification with 439 images, reported 96% sensitivity. In 
clinical practice, failing to detect malignancy has far more 
severe consequences than misclassifying a benign lesion as 
malignant, (false positive). The 29% false-negative rate for 
malignant cases could lead to delayed diagnoses, allowing 
disease progression that may result in advanced-stage 
cancer, increased mortality risk, and reduced treatment 
efficacy. Our lower sensitivity might stem from the inherent 
subtlety of some malignant lesions, potential limitations 
of SMOTE for this complex class, or the aggressive feature 
selection potentially removing crucial subtle features. 
Future improvements could focus on addressing class 
imbalance or incorporating additional features to better 
distinguish malignant characteristics.

Our approach aligns with trends in the literature that utilize 
deep learning for breast ultrasound analysis.3-6 We extended 
the deep feature extraction concept used by Yu et al.,5 by 
fusing features from three distinct architectures rather 
than focusing on specific regions within one architecture 
(Inception-V3). Our model achieved strong performance, 
particularly for the benign (AUC: 0.984) and normal (AUC: 

0.969) classes. While direct comparison is challenging 
due to variations in datasets, preprocessing, metrics, and 
architectures across studies, these results are competitive 
with or exceed those reported previously (e.g., Zhang et al.1 
90% AUC using Breast Imaging Reporting and Data System 
features; Vigil et al.4 78.5% accuracy using autoencoder/
radiomics; Cao et al.3 87.5% accuracy using DenseNet for 
ternary classification; Gu et al.12 0.91 AUC using VGG19 for 
binary prediction). However, achieving the near-perfect 
scores reported by Jabeen et al.16 (99.1% accuracy with 
augmented BUSI dataset using pre-trained DarkNet-53) or 
Kiran et al.17 (100% accuracy with EfficientKNN on a small 
780-image dataset) remains challenging, and may depend 
heavily on their reliance on extensive data augmentation 
and smaller, potentially less diverse datasets, which may 
not generalize as effectively to our ternary classification 
task across a larger, multi-center dataset of 2233 images.

Study Limitations
Several limitations should be acknowledged in this study. 
The multi-step feature selection, while necessary, might 
have discarded valuable information; the clinical relevance 
of the final 50 features needs further investigation. 
Although the dataset was compiled from multiple sources 
to enhance diversity, the model’s performance was 
evaluated only on an internal test split. External validation 
on completely independent datasets from different 
institutions and ultrasound machines is crucial to assess its 
generalizability.

Future research should prioritize enhancing the 
sensitivity (recall) for malignant lesion detection. This 
may involve exploring cost-sensitive learning algorithms 
that better address the misclassification of malignant 
cases, experimenting with alternative data augmentation 
techniques techniques, advanced oversampling methods 
(e.g., ADASYN, class weighting within models), or optimizing 
feature selection. Investigating attention mechanisms 
(as in Kalafi et al.6 or Lyu et al.18 for segmentation) within 
the feature extractors, exploring architectures known for 
high performance, such as advanced ResNet and variants, 
could yield improvements. Investigating alternative 
approaches, such as end-to-end deep learning models 
that learn features and classify directly without explicit 
feature extraction/selection steps, or autoencoders for 
dimensionality reduction, could also be beneficial.

CONCLUSION
In conclusion, this study demonstrates the considerable 
potential of combining deep feature extraction from 
multiple CNNs with advanced feature selection and 
ensemble learning techniques for classifying breast 
ultrasound images. This approach represents a promising 
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frontier in breast cancer diagnostics. The developed model 
achieved high overall accuracy and discriminatory power, 
particularly excelling in the classification of benign and 
normal cases on a diverse, multi-center dataset. These 
results underscore the model’s efficacy and potential as 
a robust tool for clinical decision support. By mitigating 
challenges associated with operator dependency and 
subjective interpretation, such automated methods can 
offer a reproducible approach to enhance early detection 
and potentially reduce unnecessary invasive procedures. 
However, the critical challenge of lower sensitivity 
(recall) for malignant lesions must be addressed through 
further research and refinement. While promising as a 
component of a computer-aided diagnosis system to 
support radiologists and enhance consistency, this model 
requires significant improvements in malignant detection 
and rigorous external validation are essential before it can 
be reliably integrated into clinical workflows to ultimately 
support improved patient outcomes.
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