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ABSTRACT
Objective: Bloodstream infections (BSIs) require rapid identification to initiate timely antimicrobial 
therapy, yet blood culture-the current diagnostic gold standard-suffers from delayed results and limited 
sensitivity. This study aimed to develop an interpretable machine learning (ML) model using routine 
laboratory parameters to predict blood culture positivity. 
Methods: A total of 1,972 adult patients who underwent complete blood count, C-reactive protein, 
procalcitonin (PCT), and blood culture testing at a tertiary hospital were retrospectively included. Three 
models-random forest, H2O automated ML, and an ensemble model-were developed and evaluated 
using standard classification metrics [area under the curve (AUC)- receiver operating characteristic 
(ROC), sensitivity, specificity, F1 score]. SHapley Additive exPlanations (SHAP) analysis was employed to 
enhance interpretability. 
Results: The ensemble model yielded the best performance, achieving an AUC-ROC of 0.95, sensitivity 
of 0.78, specificity of 0.97, and F1 score of 0.84. External validation on an independent cohort confirmed 
the model’s generalizability (AUC-ROC: 0.85). SHAP analysis revealed that age and PCT were the most 
influential features with both statistical and clinical relevance. Basophil count, while ranked highest 
by SHAP, showed low sensitivity, highlighting the difference between algorithmic weight and bedside 
utility. 
Conclusion: These findings support the integration of routine, readily available laboratory data into 
an explainable AI framework to accurately predict culture positivity. The model’s strong performance 
and interpretability suggest its potential application in clinical decision support systems to improve 
diagnostic stewardship, reduce unnecessary cultures, and optimize resource use in suspected BSI cases.
Keywords: Sepsis, blood culture, machine learning, procalcitonin, C-reactive protein

ÖZ
Amaç: Kan dolaşımı enfeksiyonlarında (KDE) erken tanı, zamanında antimikrobiyal tedavi başlatılması 
açısından kritik öneme sahiptir. Ancak, mevcut altın standart tanı yöntemi olan kan kültürü, gecikmeli 
sonuç vermesi ve düşük pozitiflik oranı nedeniyle sınırlıdır. Bu çalışmanın amacı, rutin laboratuvar 
verilerini kullanarak kan kültürü pozitifliğini öngörebilecek yorumlanabilir bir makine öğrenimi (ML) 
modeli geliştirmektir.
Yöntem: Üçüncü basamak bir hastanede tam kan sayımı, C-reaktif protein, prokalsitonin (PCT) ve kan 
kültürü testi yapılan toplam 1.972 yetişkin hasta retrospektif olarak çalışmaya dahil edilmiştir. Rastgele 
orman, H2O otomatik ML ve bir ensemble (birleşik) model olmak üzere üç farklı model geliştirilmiş ve 
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INTRODUCTION
Bloodstream infections and sepsis remain leading causes 
of morbidity and mortality, especially in critically ill and 
immunocompromised patients. Early identification of 
bacteremia is essential to initiate timely antimicrobial 
therapy, which can significantly reduce adverse outcomes. 
However, blood culture-the current gold standard 
diagnostic method-is limited by low positivity rates and 
delayed results, often requiring 24-72 hours.1,2

To bridge this diagnostic delay, clinicians frequently 
rely on nonspecific biomarkers such as complete blood 
count (CBC), C-reactive protein (CRP), and procalcitonin 
(PCT). While these markers offer some insight, their 
standalone predictive value remains suboptimal. Studies 
have shown that PCT outperforms CRP in specificity for 
bacterial infections, but both lack adequate sensitivity to 
reliably predict positive cultures.3,4 Moreover, traditional 
clinical assessment is often inaccurate and inconsistent in 
estimating bacteremia risk.5

Recent developments in artificial intelligence (AI) and 
machine learning (ML) have opened new avenues for early 
bacteremia prediction using routine clinical data. Several 
studies have demonstrated that ML algorithms can improve 
predictive accuracy by combining laboratory values, vital 
signs, and demographic information.6,7 These models have 
yielded area under the curve (AUC) values of up to 0.84, 
indicating high potential in differentiating between true 
infections and false alarms.8

However, many existing models are limited by dataset 
specificity, exclusion of key demographic factors (such 
as age and sex), and lack of explainability, which hinders 
clinical adoption.9 Additionally, hematological markers like 
neutrophil-to-lymphocyte ratio, band count, and platelet 
levels (which are routinely available and cost-effective) are 
often underutilized in current models, despite evidence 
supporting their role in predicting bacteremia.10

The present study aims to address these limitations by 
developing a ML-based model that integrates hemogram 
parameters, CRP, PCT, age, and gender to predict blood 
culture positivity. This approach not only leverages data 

readily available at the point of care but also contributes 
to diagnostic stewardship by reducing unnecessary testing 
and improving the timing of antimicrobial interventions.

METHODS

Study Population/Subjects 
This study was conducted at University of Health Sciences 
Türkiye, İzmir Tepecik Training and Research Hospital. 
Patients who presented to this center and its affiliated 
hospital (AH) between January 1, 2024, and March 31, 
2025, and underwent first-time blood culture, CBC, PCT, 
and CRP tests were included. The baseline characteristics 
of the study population are shown in Table 1. Patients 
with incomplete test results, sub-parameters missing, or 
contaminating agents detected in blood cultures were 
excluded.

Hemogram samples were analyzed in both hospitals using 
Sysmex XN-1000 (Kobe, Japan) hematology analyzers; CRP 
tests were analyzed using Beckman Coulter AU-5800 in 
the main hospital and Beckman Coulter AU680 (California, 
USA) in the AH; and PCT tests were analyzed using Siemens 
Advia Centaur XPT (chemiluminescence immune assay, 
Erlangen, Germany) at the main hospital and Beckman 
Coulter DXI-800 (chemiluminescence immune assay, 
California, USA) at the AH.

Venous blood samples were collected under aseptic 
conditions into automated blood culture bottles from 
the Biomerieux BacT/Alert 3D (France) brand. Translated 
with DeepL.com (free version). The bottles were placed 
in the corresponding brand-specific incubator system 
for continuous monitoring. Bottles that flagged positive 
for microbial growth were subcultured onto appropriate 
culture media. Following incubation, colony morphology 
was assessed, and species identification was performed by 
a clinical microbiologist using Gram staining, biochemical 
assays, and/or automated identification systems. 

The reagents and calibrators were provided by Sysmex 
for hemogram analyses and by Beckman Coulter for CRP 
and PCT measurements. Using the respective automated 
analyzers, all analyses were carried out in accordance with 

AUC-ROC, duyarlılık, özgüllük ve F1 skoru gibi sınıflandırma ölçütleriyle değerlendirilmiştir. Modelin yorumlanabilirliğini artırmak amacıyla SHapley 
Additive exPlanations (SHAP) analizi uygulanmıştır.
Bulgular: Ensemble model en iyi performansı göstermiş; [alıcı işletim karakteristiği eğrisi (AUC)-eğri altındaki alan (ROC)]: 0,95, duyarlılık: 
0,78, özgüllük: 0,97 ve F1 skoru: 0,84 olarak bulunmuştur. Bağımsız bir doğrulama veri seti üzerinde yapılan analiz, modelin genellenebilirliğini 
doğrulamıştır (AUC-ROC: 0,85). SHAP analizine göre yaş ve PCT hem istatistiksel hem de klinik açıdan en etkili değişkenler olarak öne çıkmıştır. 
Basofil sayısı ise algoritmik olarak yüksek önem taşımasına rağmen düşük duyarlılığı nedeniyle klinik faydası sınırlı bulunmuştur. 
Sonuç: Bu sonuçlar, rutin laboratuvar verilerinin açıklanabilir yapay zeka çerçevesinde kullanılarak kan kültürü pozitifliğinin yüksek doğrulukla 
öngörülebileceğini göstermektedir. Modelin güçlü performansı ve yorumlanabilirliği, tanı yönetimini iyileştirmek, gereksiz kültürleri azaltmak ve 
şüpheli KDE vakalarında kaynak kullanımını optimize etmek için klinik karar destek sistemlerinde potansiyel bir uygulama olduğunu göstermektedir.
Anahtar Kelimeler: Sepsis, kan kültürü, makine öğrenimi, prokalsitonin, C-reaktif protein
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the manufacturers’ instructions. Routine maintenance and 
calibration procedures were performed regularly to ensure 
analytical accuracy and reliability.

Internal quality control for the hemogram was ensured 
using materials supplied by the manufacturer (Sysmex), 
whereas quality control for CRP and PCT assays was 
performed using materials obtained from Bio-Rad 
(California, USA).

Study Design
Before starting this retrospective study, ethical approval 
was obtained from the Ethics Committee of University 
of Health Sciences Türkiye, İzmir Tepecik Training and 
Research Hospital (decision number: 2025/03-27, date: 
10.04.2025). Patient identity information was anonymized, 
and a dataset containing age, sex, CRP, PCT, CBC, and 
blood culture results from 2345 patients (2150 from the 
main building and 195 from the AH) was transferred to 
Microsoft Excel 2021 (USA).

After applying exclusion criteria, the final dataset  
included 1972 patients (1867 from the main hospital and 

105 from the AH). This dataset was then transferred to 
Python software (version 3.11, USA) for ML analysis. 

Following data cleaning, the dataset was randomly 
partitioned into training and testing sets in an 80:20 
ratio using stratified sampling based on the binary 
outcome variable, ensuring preservation of the original 
class distribution. The Standards for Reporting Diagnostic 
Accuracy diagram illustrating the patient flow throughout 
the study is presented in Figure 1.

Data Preprocessing and Training of Machine 
Learning Algorithms
For data preprocessing, patient results were transferred to 
Microsoft Excel. Cases with missing values were excluded 
from the dataset. Bacterial culture results were evaluated 
and converted into a binary classification. Patient samples 
in which bacterial species were identified by a clinical 
microbiologist were classified as “growth present = 1,” 
whereas samples with no growth were classified as “no 
growth = 0.” Samples reported as contamination were 
excluded from the study. Additionally, sex was encoded as 

Figure 1. The Standards for Reporting Diagnostic Accuracy diagram
AutoML: Automated machine learning
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a binary variable, with male = 0 and female = 1. The cleaned 
dataset was transferred to Python for ML analysis. 

The models were trained using the 15 most important 
predictive parameters, which included:

• Demographic variables: Age, sex

• Biochemical variables: PCT and CRP

• Hematologic variables: Hemogram leucocyte variables 
(total white blood cell, neutrophil, lymphocyte, monocyte, 
eosinophile, basophile count) and hemoglobin.

Following model training, performance evaluation was 
conducted using the test and validation datasets.

The cleaned dataset was imported into the Python 
programming environment for ML analysis. Model 
development was conducted using Python within the 
PyCharm integrated development environment (IDE). 
PyCharm is a widely adopted and robust IDE for Python, 
offering advanced functionalities such as intelligent 
code completion, comprehensive debugging tools, and 
integrated testing frameworks. These features facilitate 
efficient data preprocessing, model training, and algorithm 
optimization, while providing seamless integration with 
widely used ML libraries, including scikit-learn, thereby 
supporting streamlined and scalable project workflows.11

A total of three AI ML algorithms were evaluated in this 
study: random forest (RF), H2O automated ML (AutoML) 
(version 3.46), and an ensemble ML method. Model 
development was carried out in a Python 3.11 environment 
using H2O AutoML.12 To overcome the limitations inherent 
in manual model development-particularly when the 
primary expertise of the user is not in data science-AutoML 
tools have emerged as a practical solution. AutoML 
tools automate key steps such as feature engineering, 
model building, and hyperparameter optimization, which 
traditionally require extensive domain expertise. Despite 
the clear advantages and the growing interest in ML 
applications, few studies have applied AutoML tools within 
the clinical laboratory context.13 The best-performing 
model within the H2O AutoML framework was selected 
based on AUC-receiver operating characteristic (ROC) and 
logloss values.

Computational Environment and Libraries
In the development of classification models using ML and 
deep learning techniques, a variety of open-source Python 
libraries were employed for data preprocessing, model 
training, evaluation, and visualization. All procedures 
were conducted within the Python 3.11 programming 
environment. The libraries utilized are categorized as 
follows:

Data Processing and Analysis
• Pandas (v1.5): For creating and manipulating data frames

• Numpy (v1.23): For numerical operations and vectorized 
calculations

ML Model Development
• Scikit-learn (v1.2): For implementing ML algorithms and 
performance evaluation

• H2O (.frame, .model) (v3.46.0.6): H2OAutoML

Model Evaluation and Visualization
• Matplotlib (v3.6): For data visualization and plotting

• Sklearn (.metrics, .ensemble) (v1.2): For performance 
metrics such as confusion matrix, ROC-AUC, and precision-
recall (PR)-AUC

• Shap (v0.47): For SHapley Additive exPlanations (SHAP) 
analysis and feature importance visualization

Following model training, performance evaluation was 
conducted using the designated test dataset.

Performance Evaluation
Scikit-learn, Pandas, NumPy, SciPy, StatsModels, and 
Matplotlib/Seaborn-among Python’s most robust libraries 
for ML and statistical analysis-were employed in this 
project. The modeling process underwent a comprehensive 
evaluation, including hyperparameter tuning and  
model selection through internal cross-validation. Model 
performance was assessed using multiple evaluation 
metrics. The following criteria were used for classification:

1. Classification Performance Metrics

• AUC-ROC

• AUC-PR

• Confusion matrix analysis

• Sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV), positive likelihood ratio 
(PLR), negative likelihood ratio (NLR) F1 score, odds ratio

2. Model interpretability metrics

• Feature importance analysis

• SHAP graphs

3. Validation results of the predictive models were analyzed 
to ensure a comprehensive assessment. This structured 
and multifaceted evaluation approach provides a robust 
framework for predicting treatment modality outcomes 
based on laboratory-derived data.
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RESULTS

Dataset Description and Data Pre-processing
The dataset used in this study included a total of 1,972 
records, consisting of 1,494 entries in the training set, 373 in 
the test set, and an additional 105 records in the validation 
set. All datasets contained hemogram parameters 
alongside demographic data, allowing for comprehensive 
baseline characterization.

Baseline demographic characteristics of the study 
population are presented in Table 1. The mean age was 
46.08±30.13 years in the training set, 44.47±30.51 years 
in the test set, and significantly higher in the validation 
set at 65.68±16 years (p<0.001). When stratified by sex, 
no significant differences were observed in mean age 
between male and female participants within each subset 
(all p>0.05). The reason the mean age was significantly 
higher in the AH compared to the main building is that the 
data here were obtained from patients mainly hospitalized 
in the palliative care ward.

Regarding sex distribution, males comprised 53.4% 
of the training set, 52.3% of the test set, and 61% of the 

validation set, while females made up 46.6%, 47.7%, and 
39%, respectively. These differences were not statistically 
significant (p=0.277), suggesting a relatively balanced 
gender distribution across the subsets.

Descriptive statistics for hemogram and related variables 
are presented in Table 2. Among all measured biomarkers, 
basophil count (BASO) were the only variable showing a 
statistically significant difference between the datasets 
(p<0.001). Other parameters, including white blood cell 
count, neutrophils, lymphocytes, monocytes, eosinophils, 
hemoglobin, CRP, and PCT, did not show significant 
variation across the training, test, and validation cohorts 
(all p>0.05). This indicates general homogeneity in these 
biomarkers across subsets, enhancing the comparability of 
model training and validation.

“The performance of RF, H2O AutoML, and ensemble 
models was comparatively evaluated based on their 
predictive capabilities, classification metrics, and 
interpretability. Classification metrics such as F1 score, 
sensitivity, specificity, and AUC-ROC were used to assess 
the models’ ability to discriminate between classes."

Table 1. The baseline characteristics of the study population

Characteristics
Train set
(n=1494)
Value±SD

Test set
(n=373)
Value±SD

Validation set
(n=105)
Value±SD

p value

Age (years) 46.08±30.13 44.47±30.51 65.68±16 <0.001
Male 46.03±30.07 43.05±31.81 65.69±15.51
Female 46.15±30.22 46.02±29.03 65.66±16.95
Sex 0.277
Male 798 (53.4%) 195 (52.3) 64 (61%)
Female 696 (46.6%) 178 (47.7%) 41 (39%)
Blood culture positivity rate 363 (24.3 %) 91 (24.4 %) 36 (34.29 %)
SD: Standart deviation

Table 2. Descriptive statistics of the hemogram and related variables

Variable Unit Train set
Value±SD

Test set
Value±SD

Validation set
Value±SD p value

White blood cell (×109/L) 13.34±15.14 12.63±7.94 10.28±5.39 0.075
Neutrophil (×109/L) 8.9±6.6 8.99±6.79 8.06±5.15 0.420
Lymphocyte (×109/L) 3.35±12.18 2.74±3.69 1.30±0.76 0.154
Monocyte (×109/L) 1.09±2.17 1.09±0.77 0.77±0.42 0.257
Eosinophil (×109/L) 0.28±0.68 0.27±0.32 0.13±0.22 0.060
Basophil (×109/L) 0.12±0.18 0.11±0.09 0.04±0.03 <0.001
Hemoglobin (g/dL) 10.97±2.6 11.07±2.59 10.64±2.28 0.327
C-reactive protein (mg/L) 78.23±91.44 81.97±95.94 94.03±78.09 0.217
Procalcitonin (ng/mL) 3.48±14.05 3.36±10.68 3.76±9.14 0.794
SD: Standart deviation
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Comparison of Classification Performance Metrics
The analysis began with the RF model prior to evaluating 
other models. To determine the optimal classification 
threshold, multiple cut-off values (0.3, 0.5, and 0.7) were 
evaluated based on their corresponding F1 scores. Among 
these, a threshold of 0.3 yielded the highest F1 score, 
indicating a better balance between precision and recall. 
Consequently, the analysis proceeded using this threshold 
for subsequent model evaluation.

Following the initial modeling phase, the H2O AutoML 
framework was employed to systematically explore 
a wide range of algorithms and hyperparameter 
configurations. Among the candidate models generated, 
a gradient boosting machine (GBM) emerged as the 
most performing, striking an optimal trade-off between 
discrimination and calibration metrics-specifically AUC-
ROC and log loss. The selected model (ID: GBM_grid_1_
AutoML_9_20250326_201624_model_8) achieved an 
AUC-ROC of 0.942 and a log loss of 0.283, indicating 
both high classification accuracy and well-calibrated 
probabilistic outputs.

In the current dataset, the RF model demonstrated superior 
sensitivity, whereas the H2O AutoML framework yielded 
higher specificity. Given the complementary strengths of 
these models, an ensemble approach combining both 
was hypothesized to offer enhanced overall performance. 
Accordingly, further performance analyses were conducted 
using the ensemble model.

Table 3 presents a comprehensive comparison of the 
three models-RF (threshold=0.30), H2O AutoML, and 
the ensemble model-based on various diagnostic and 
predictive performance metrics. Among these, the 
Ensemble Model demonstrated the most balanced and 
robust performance across nearly all evaluated criteria. In 
terms of sensitivity, the RF model achieved the highest value 
(0.80), indicating its superior ability to correctly identify 
positive cases. However, the H2O AutoML model excelled 
in specificity (0.98) and PPV (0.90), highlighting its strength 
in correctly identifying negative cases and reducing false 
positives. The ensemble model, which was developed by 
combining the strengths of the two approaches, achieved 
a high sensitivity (0.78) close to RF, and a specificity (0.97) 
comparable to AutoML, reflecting its effectiveness in 
maintaining a strong trade-off among both metrics.

Furthermore, the ensemble model yielded the highest 
odds ratio (121.59) and F1 score (0.84) among the three, 
indicating a superior overall discriminatory power and a 
well-balanced PR relationship. Its PLR of 27.50 and NLR 
of 0.23 also suggest a high diagnostic utility. These results 
support the rationale for using an ensemble strategy, as 
it effectively leverages the complementary advantages of 
the individual models.

Figure 2a illustrates the ROC and PR curves of the three 
ML models evaluated in this study: RF, H2O AutoML, and 
the ensemble model. All models demonstrated excellent 
discriminative performance, with identical AUC-ROC and 
AUC-PR values of 0.95/0.89, indicating a strong ability to 

Table 3. Diagnostic and predictive performance metrics for machine learning models
Random forest 
(Th=0.30) H2O automated ML Ensemble model Validation set

Sensitivity 0.80
(0.71-0.87)

0.63
(0.52-0.72)

0.78
(0.68-0.85)

0.78
(0.68-0.85)

Specificity 0.94
(0.91-0.96)

0.98
(0.95-0.99)

0.97
(0.95-0.99)

0.93
(0.90-0.96)

Positive predictive value 0.81
(0.73-0.89)

0.90
(0.83-0.97)

0.90
(0.83-0.97)

0.85
(0.78-0.92)

Negative predictive value 0.94
(0.90-0.96)

0.89
(0.86-0.93)

0.93
(0.90-0.969

0.89
(0.86-0.92)

Positive likelihood ratio 13.31
(8.30-21.33)

29.44
(13.13-66.00)

27.50
(13.77-54.92)

10.73
(5.64-18.95)

Negative likelihood ratio 0.21
(0.14-0.32)

0.38
(0.29-0.50)

0.23
(0.15-0.33)

0.24
(0.15-0.33)

Odds ratio 63.22
(31.02-128.80)

77.12
(30.93-192.26)

121.59
(51.42-287.46)

44.8
(21.97-93.01)

F1 score 0.81
(0.73-0.87)

0.74
(0.66-0.81)

0.84
(0.77-0.89)

0.81
(0.74-0.86)

Matthews correlation coefficient 0.745
(0.660-0.822)

0.694
(0.603-0.775)

0.790
(0.714-0.861)

0.721
(0.669-0.787)

Th: Threshold, ML: Machine learning
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distinguish between positive and negative cases. Despite 
the equal AUC values, the slight variations in curve shapes 
across models reflect differences in threshold behavior 
and confidence calibration.

Figure 2b provides the confusion matrices for the respective 
models, further highlighting their classification behaviors. 

The RF model (threshold=0.30) achieved a relatively 
higher sensitivity, correctly identifying 73 out of 91 actual 
positive cases, albeit at the expense of slightly more false 
positives (17 cases). In contrast, the H2O AutoML model 

prioritized specificity, yielding only 6 false positives while 
missing true positives (34 false negatives). The ensemble 
model balanced these trade-offs effectively, reducing 
false negatives compared to AutoML (20 cases) while 
maintaining a high specificity (274 true negatives).

These findings confirm that although overall discriminative 
capacity was similar across models (as reflected in the AUC 
metrics), the ensemble model provided the most favorable 
balance between sensitivity and specificity-an important 
consideration in scenarios requiring both reliable detection 
and minimization of false alarms.

Figure 2. Model performance outputs. (A) AUC-ROC and AUC-PR plots for machine learning models. (B) Confusion 
matrixes for machine learning models. (C) Performance metrics of validation set
ROC: Receiver operating characteristic, AUC: Area under the curve, RF: Random forest, AutoML: Automated machine 
learning, PR: Precision-recall
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Validation Results of the Models
In accordance with the International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC) 
recommendations, external validation was conducted to 
ensure the generalizability and robustness of our models. 
The performance outcomes of the validation set are 
summarized in Table 3 and Figure 2c.

The ensemble model developed in this study was further 
evaluated on an independent validation set to assess its 
generalizability beyond the original test data, in accordance 
with IFCC guidelines that recommend external validation 
for diagnostic algorithms. The model demonstrated strong 

classification performance, achieving a sensitivity of 0.78 
and a specificity of 0.93, indicating a balanced ability to 
detect both positive and negative cases. The area under 
the ROC curve (AUC-ROC) was 0.85, while the area 
under the PR curve (AUC-PR) reached 0.74, reflecting 
solid discriminative power even in the presence of class 
imbalance. Additional metrics such as a PPV of 0.85, 
a NPV of 0.89, a PLR of 10.73, and an odds ratio of 44.8, 
further emphasize the clinical relevance of the model’s 
predictions. The F1 score of 0.81 and Matthews correlation 
coefficient (MCC) of 0.721 confirm the model’s robustness 
and diagnostic accuracy. These results are consistent with 
the findings obtained from the test set, further supporting 
the model’s reliability across different data sources.

Interpretability and Threshold-Based Diagnostic 
Performance of Key Variables 
To improve the interpretability of the model, SHAP analysis 
was applied to evaluate the contribution of individual 
features to model predictions. As illustrated in Figure 
3, the most impactful variable was “BASO”, followed by 
“AGE”, “LYM”, and “PROCALCITONIN”. Although “BASO” 
ranked highest, its SHAP value distribution was narrow 
and centered near zero, indicating frequent but limited 
directional impact. In contrast, AGE and “PROCALCITONIN” 
displayed broader SHAP distributions, suggesting stronger 
influence on model output when elevated. Features such 
as GENDER, MONO, and WBC ranked lower in importance, 
showing minimal effect.

Complementing the SHAP results, ROC-based threshold 
analysis (Table 4) revealed that age (threshold=46.0) 
provided the highest sensitivity (0.92), with moderate 
specificity (0.55). PCT (threshold=0.26) showed a sensitivity 
of 0.78 and specificity of 0.68, indicating balanced 
diagnostic value. In contrast, basophil demonstrated high 

Figure 3. SHAP Summery plot of feature contributions
BASO: Basophil count, LYM: Lymphocyte, EOS: Eosinophil, 
CRP: C-reactive protein, NEU: Neutrophil, HGB: Hemoglobin, 
WBC: White blood cell, MONO: Monocyte, SHAP: SHapley 
Additive exPlanations

Table 4. Receiver operating characteristic-derived diagnostic thresholds of selected variables
Feature Threshold Sensitivity Specificity
Basophil 0.4 0.03 0.98
Gender 2.0 0.0 1.0
C-reactive protein 99.6 0.69 0.75
Eosinophil 4.5 0.0 1.0
Hemoglobin 6.7 1.0 0.03
Lymphocyte 60.0 0.0 1.0
Monocyte 5.0 0.01 1.0
Neutrophil 6.9 0.65 0.5
Procalcitonin 0.26 0.78 0.68
White blood cell 22.6 0.09 0.93
Age 46.0 0.92 0.55
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specificity (0.98) but low sensitivity (0.03), while gender, 
eosinophil, lymphocyte , and monocyte achieved perfect 
or near-perfect specificity but negligible sensitivity.

DISCUSSION
The demographic characteristics and baseline laboratory 
findings of our cohort provide critical context for 
interpreting model behavior and clinical performance. Our 
median age of 46 years, male predominance, and blood 
culture positivity rate of 24.3% are generally consistent 
with prior studies on similar hospital populations.1-3 This 
rate is slightly higher than in some multicenter analyses 
that report rates ranging from 6.6% to 12%, likely due to 
different inclusion criteria or local epidemiology.14-16

Although the mean age in the validation set was 
significantly higher than in the training and test sets 
(p<0.001), the model demonstrated robust performance 
across multiple metrics. The validation results, including 
high sensitivity (0.78), specificity (0.93), PPV (0.85), and an 
F1 score of 0.81, indicate effective generalizability without 
signs of overfitting. Moreover, the positive and NLRs (10.73 
and 0.24, respectively) and a strong odds ratio (44.8) 
support the model’s diagnostic strength. Nonetheless, the 
notable age discrepancy suggests a potential distributional 
shift, which could impact external validity. Therefore, 
monitoring model performance across different age 
groups in future applications is recommended to ensure 
consistent generalizability.

Notably, serum PCT and CRP levels were significantly 
elevated among culture-positive patients, which aligns 
with previous findings. Jeong et al.17 reported median PCT 
and CRP levels of 3.2 ng/mL and 132 mg/dL, respectively, 
in patients with bacteremia, significantly higher than 
in non-bacteremia groups (0.4 ng/mL and 82.2 mg/dL). 
Nasimfar et al.18 similarly observed that septic children 
had markedly elevated PCT (3.42 ng/mL) and CRP (55.18 
mg/L) levels compared to controls. These results support 
the early diagnostic potential of these biomarkers. Liaudat 
et al.19 further demonstrated that PCT outperformed CRP 
and white blood cell count in predicting culture positivity 
using principal component analysis.

The ensemble ML model developed in our study achieved 
excellent predictive metrics (AUC-ROC: 0.95, F1 score: 
0.84, MCC: 0.79), outperforming most previously reported 
models. In contrast, other ML approaches using CatBoost or 
RF have typically yielded AUCs between 0.75 and 0.85.6,7,20,21 
Crucially, our model maintained high performance in 
external validation (AUC: 0.85; sensitivity: 0.78; specificity: 
0.93), which strengthens its generalizability.

Interpretability remains a cornerstone of clinical ML 
implementation. Our approach integrated SHAP analysis 

for global feature importance with ROC-derived thresholds 
for clinical usability. Age and PCT stood out as dual anchors 
of model strength-ranking high in SHAP impact and 
exhibiting clear diagnostic cut-offs. This is consistent with 
findings by Galli et al. 22, who confirmed that PCT provides 
greater specificity and sensitivity than CRP in critically ill 
patients, and by Morgan et al.23, who demonstrated that 
PCT-guided strategies improve antibiotic stewardship in 
febrile neutropenia.

BASO was the top-ranked SHAP feature, yet exhibited poor 
clinical sensitivity. This highlights the distinction between 
algorithmic influence and practical diagnostic utility, 
an important concept in applied ML.5,13 Features such as 
eosinophils and sex had high specificity but low sensitivity, 
indicating value in reducing false positives.

The combined use of SHAP analysis and ROC-derived 
thresholds offers a powerful dual approach for interpreting 
model behavior in both algorithmic and clinical domains. 
While BASO emerged as the top-ranking feature in SHAP 
importance, its limited diagnostic utility, particularly due to 
low sensitivity, suggests it plays a secondary role in actual 
decision-making. Conversely, age and PCT were notable 
not only for their strong SHAP contributions but also for 
yielding clinically meaningful threshold values, reinforcing 
their role as primary diagnostic indicators within the 
model.

Interestingly, some variables, such as gender and 
eosinophils, demonstrated high specificity yet poor 
sensitivity. This suggests they are better suited for ruling 
out false positives rather than identifying true disease 
states, underscoring that statistical importance does not 
always equate to clinical utility. These findings illustrate 
the nuanced roles that features may play: a variable may 
be statistically dominant in shaping predictions (via SHAP) 
but lack practical impact at the bedside (via threshold 
behavior), or vice versa.4,24

Clinically, the implementation of our model could have a 
significant impact. ML tools have been shown to reduce 
unnecessary blood cultures and antibiotic use while 
maintaining diagnostic accuracy. For instance, Boerman 
et al.25 and Martin et al.20 report, up to 60% reduction in 
unnecessary cultures using ML models in ED and PICU 
settings. Similar benefits were observed in studies using 
real-time prediction tools based on vital signs or lab 
panels.26

Nonetheless, our study has limitations. The retrospective 
single-center design introduces potential bias, though 
external validation provides partial mitigation. The 
exclusion of clinical signs, comorbidities, and vital data-
known to enhance predictive performance in other 
models-limits our model’s clinical depth.9,27 In addition, 
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the model does not distinguish true bacteremia from 
contamination, an issue commonly encountered in blood 
culture interpretation.17,28

Despite these limitations, our model offers a promising 
path forward. It uses only routine laboratory values and 
demographic features to deliver high performance with 
interpretable logic. Prospective multicenter studies 
and real-world deployment in clinical decision support 
systems (CDSS) are warranted to evaluate the true impact 
on diagnostic stewardship.

CONCLUSION
Our findings demonstrate that an interpretable 
ensemble ML model, leveraging routine hematologic and 
inflammatory parameters, can accurately predict blood 
culture positivity. By integrating SHAP-based model 
interpretability with clinically meaningful thresholds, 
the model provides both algorithmic transparency and 
bedside usability. Key predictors such as age and PCT 
consistently contributed to diagnostic performance across 
statistical and clinical domains. Given its external validity 
and reliance on readily available data, this model has the 
potential to be deployed in CDSS to improve diagnostic 
stewardship and reduce unnecessary blood cultures. 
Future prospective, multicenter validation studies are 
warranted to confirm these benefits and facilitate clinical 
implementation.
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